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A model for droplet transport in turbulent gas–liquid flow in horizontal channels or pipes is developed.
We invoke the kinetic theory of Reeks and co-workers for inertial particles, and the Reynolds stress-x
model of Wilcox for the gas turbulence. We introduce a suitable turbulence boundary condition at the
gas–liquid interface. The full kinetic model is compared to experimental data using high density SF6

gas and Exxsol oil, and the model gives a good prediction of the droplet distribution.
A simplified ‘‘first order model” that adopts a diameter-averaged eddy diffusivity from the full turbu-

lence model, and that ignores the variation of the turbulence over the cross section, gives reasonable
order of magnitude estimates of the droplet concentration profiles. There is, however, a clear tendency
to overestimate the droplet concentration near the interface (and hence the axial droplet transport rate).
Furthermore, the classical single phase pipe flow diffusivity ð0:075Ru�Þ underestimates the averaged eddy
diffusivity by a factor of about two (giving too small concentration and transport rate).

The strength of the full kinetic model is that it correctly predicts a droplet diffusivity that accounts for
the droplet inertia. This is important for the larger droplets close to the interface which contribute the
most to the axial droplet transport rate. Hence, a simple eddy diffusivity will not correctly predict the
droplet transport rate, since the droplet inertia is then ignored.

The droplet concentration in the upper half of the flow volume is dominated by the smaller droplets,
and these are in contrast subject to the scalar eddy diffusivity. An elevated concentration close to the
upper wall may be accounted for by a double-vortex secondary flow perpendicular to the axial mean
flow.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In pipelines or channels with stratified gas–liquid flow, fre-
quently encountered in the nuclear and oil/gas industries, en-
trained droplets in the gas may constitute an important fraction
of the total liquid flow rate. The goal in this paper is to construct
a model for droplet transport accounting for variations in the gas
turbulence level and stress in the flow cross section.

Previous work has shown that simple ‘‘first order modelling” of
the droplet concentration in stratified liquid/gas flow, based on a
particulate suspension in homogeneous turbulence, will not give
fully satisfactory results when compared to experimental data
(Skartlien, 2006). Such modelling consists of an exponential con-
centration profile for each droplet size, by assuming constant diffu-
sivity (homogeneous turbulence) throughout the flow cross
section. The data examined in this work were those of Tayebi
et al. (2000), that covers the vertical diameter in a horizontal pipe.
ll rights reserved.
First, the characteristic turbulent pipe flow diffusivity 0:075Ru�

(R is the pipe radius, or the half-height of the gas volume when the
thickness of the liquid layer is appreciable) is too low to provide a
sufficient scale height of the total concentration profile when the
friction velocity u� is estimated from standard pipe flow formulae
from the given pressure drop. And second, the experimental con-
centration in the upper half of the flow volume shows a plateau,
of even an increase with height, for moderate mean gas velocities.
This could not be modelled by a superposition of simple exponen-
tial profiles with droplet-size dependent scale heights. For larger
gas velocities where the concentration profile is less steep (with
a flow cross section height smaller than 10 exponential scale
heights), such a concentration plateau was not found.

The concentration in the lower half of the gas volume will influ-
ence the axial transport of fluid in the form of droplets, while the
concentration of droplets in the upper half of the pipe is essential
for the deposition of corrosion inhibitor and production chemicals
on the pipe wall. Glycol based corrosion inhibitor is often injected
in the water flowing in the bottom of the pipeline and the most
likely mechanism for obtaining vertical transport of the corrosion
inhibitor is turbulent diffusion of droplets.

mailto:roar.skartlien@ife.no
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow
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First order modelling captures only approximately the two most
important effects – turbulent diffusion and gravity. Turbulent dif-
fusion is providing the particle ‘‘lift”, which is balanced by gravity.
This type of rough diffusion model has been used by several
authors (e.g., Paras and Karabelas, 1991) with reasonable success
in flow of relatively large gas flow Reynolds numbers, even though
some fundamental physical effects are ignored. The two most
important (and well known) mechanisms that should be included
is the effect of inhomogeneous turbulence, and the influence of
particle inertia on the particle diffusivity. It is expected that inclu-
sion of these effects will extend the applicability of the model.

Previous ‘‘higher order” Eulerian modelling efforts (e.g., Young
and Leeming, 1997) have accounted for turbulence inhomogeneity,
but a common ingredient has been coarse approximations of the
particle diffusivity and turbophoretic drift induced by the gradient
in turbulence kinetic energy. The current work attempts to im-
prove this situation by invoking the kinetic theory of Reeks
(1992) for particles (or droplets) in combination with a full
Reynolds stress model for the gas. The kinetic theory automatically
provides the needed generalized particle diffusivity to account for
both small particles controlled by fluid diffusivity, and larger par-
ticles for which the fluid diffusivity plays no role (Skartlien, 2007).

In a general sense, the kinetic theory requires the full Reynolds
stress tensor of the carrier phase. In simple channel flow geometry,
only the wall normal stress is needed. In the current approach, the
stress-x model of Wilcox (2006) is implemented to accompany the
kinetic theory. We will neglect two-way coupling between the
droplets and the gas turbulence for now, even though particles or
droplets in gas may dissipate or amplify the gas turbulence
depending on the droplet size (e.g., Crowe, 2000; Drazen and
Jensen, 2007).

For stratified air/water flow in horizontal pipes, Williams et al.
(1996) found that the cross sectional droplet concentration may
deviate from a horizontally stratified profile with monotonically
decreasing concentration with height. This ‘‘deviatoric behavior”
was also found in the data by Tayebi et al. (2000), as noted above,
noting that the gas velocities were smaller and the gas density lar-
ger in the Tayebi data. To explain these anomalies in the droplet
concentration profile, two hypotheses have been suggested by
many authors: (1) Reynolds stress driven secondary flows in the
pipe cross section generate sufficient cross sectional transport of
droplets (Speziale, 1982, Williams et al., 1996), or (2) turbulence
inhomogeneity modulates the distribution of droplets due to tur-
bophoresis (Reeks, 1992). We will address both of these hypothe-
ses in the current work.

In the following, we discuss the model equations and their
boundary conditions, and compare the model results to experi-
ments. The turbulence model is described in Section 2. A brief
overview of the particle kinetic model is given in Section 3. Section
4 describes the calculation of concentration profiles. In Section 5
we compare the results to the experimental data of Tayebi et al.
(2000). These experiments were done in a horizontal pipe of inner
diameter of 9.95 cm containing Exxsol-D80 oil and dense SF6 gas.
The gas density and velocity represents field conditions. The dis-
cussion and conclusions are given in Section 6. Additional details
are available in an Electronic annex available from the journal
web page. These sections are referred to as the ‘‘annex” in the
following text.
2. Wilcox’ turbulence model modified for an interfacial
boundary condition

We have adopted Wilcox’ incompressible 1D channel flow code
(Wilcox, 2006), solving for the full Reynolds stresses, the mean
velocity, the turbulent kinetic energy k, and the specific dissipation
rate x, in the gas volume. The dissipation rate per unit of turbulent
kinetic energy, is given by the relation � ¼ b�kx, where b� is a
constant. The Reynolds averaged momentum equation completes
the model. We assume that the gas turbulence is unaffected by
the droplets.

We have not attempted to construct a complete wall-to-wall
turbulence model, including the interface. A model for the gas
turbulence only, then implies that we need input parameters
describing the interfacial stress and dissipation. We will tune these
parameters such that the model predicts the correct velocity pro-
file and eddy viscosity. We have modified the code of Wilcox
(2006) to account for a fully turbulent interface (Biberg, 2005),
while the treatment in the viscous sublayer near the wall is in its
original form. We assume that the interface is fully turbulent,
being controlled by the turbulence in either fluid. The viscous sub-
layer effect that would occur for a smooth or flat interface is then
not included in the model.

The turbulence model is essentially a tri-diagonal matrix solver
combined with iterations to solve the nonlinear set of equations.
The matrices are conditioned to obtain the necessary stability in
the iteration process. The turbulence model equations are solved
through the viscous sublayer near the solid wall and down to the
gas–liquid interface. The model equations are given in the annex.
The model constants have been developed for single phase channel
flow, and we adopt the same constants for the current application.

2.1. Considerations on channel flow geometry

The experimental work of Williams et al. (1996) demonstrates
that the droplet concentration in the gas volume displays a strong
influence of gravity for moderate gas velocities. In this regime, grav-
ity and turbulent diffusion play an equally important role, and the
cross sectional density contours in the pipe are roughly parallel to
the gas/liquid interface. In this case one can justify the use of 1D
models describing the cross sectional variation of the concentration
profile along the vertical pipe diameter. We will therefore adopt a 1D
modeling approach in this work, which will provide the concentra-
tion profile along the vertical diameter of the pipe.

The 1D model consists of a stratified, fully developed, statisti-
cally stationary droplet laden flow in a horizontal channel bounded
by upper and lower walls that are parallel to the mean flow.
Gravity acts in the vertical direction ðyÞ perpendicular to the
boundaries. For the fluid, we use ½u;v ;w� for the fluctuating veloc-
ity components, and ½U;V ;W � for the Reynolds averaged compo-
nents, where the components refer to the streamwise ðxÞ, wall
normal ðyÞ and spanwise (z) components, respectively.

2.2. The momentum equation

For fully developed channel flow, the Reynolds averaged
momentum equation is

�oxP þ oyðloyU � sxyÞ ¼ 0; ð1Þ

where loyU � sxy is the total shear stress, sxy ¼ qguv ;l ¼ qgm and
the axial pressure gradient oxP is constant. Wilcox invokes the Bous-
sinesq approximation at this stage relating the mean velocity to the
Reynolds stress via the eddy viscosity,

sxy ¼ qguv ’ �lToyU; ð2Þ

where lT ¼ qgmT . This gives the alternative equation in non-dimen-
sional form (wall units)

ð1þ lþT ÞoyþUþ ¼ 1� ðRþ 1Þ y
h
: ð3Þ

One can relate the height ym of maximum velocity ðoyU ¼ 0Þ, to
R ¼ si=sw, via 1� ðRþ 1Þym=h ¼ 0. Here, sw ¼ qgðu�Þ

2 is the wall
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shear stress, and u� is the wall friction velocity. We will adjust R so
that the position of the modelled velocity maximum matches the
measured maximum.

2.3. Input parameters to the turbulence model

The required parameters are the frictional Reynolds number
Res ¼ hu�=m, shear stress ratio R ¼ si=sw, and the boundary value
of the specific dissipation xi. In fact, h; R and xi would be output
parameters from a complete wall-to-wall turbulence model that
includes the interface.

The shear stress ratio R and xi are tuned to match the measured
axial velocity profile UðyÞ. We adjust R so that the height ym at
which U is maximum, coincides with the measured height. The
interfacial value xi is then adjusted to match the velocity profile
near the interface. This latter tuning does not influence the velocity
profile in the upper half of the flow volume very much.

The wall friction velocity is calculated from the given axial pres-
sure gradient. For fully turbulent Poiseuille type channel flow of
height h, the pressure gradient and the boundary shear stresses
are related by

hjoxPj ¼ si þ sw; ð4Þ

when the shear stress variation over the thin viscous sublayer
against the wall is ignored (recall that the total shear stress varies
linearly). With the wall friction velocity u� �

ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
,

hjoxPj
qðu�Þ2

¼ Rþ 1: ð5Þ

For given h and axial pressure gradient oxP, the wall friction velocity
is given by

u� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjoxPj
ðRþ 1Þq

s
: ð6Þ

We substitute h with the measured height of the gas volume at the
vertical centerline. The interfacial friction velocity u�i �

ffiffiffiffiffiffiffiffiffiffi
si=q

p
is

then found by the relation

u�i ¼
ffiffiffi
R
p

u�: ð7Þ

This value is used for the characteristic velocity that controls the
entrainment rate of droplets from the large scale interface. These
entrainment relations are given in the annex (Binder and Hanratty,
1992; Guha, 1997; McCoy and Hanratty, 1977; Tatterson, 1975).

2.4. Interfacial boundary conditions for normal stress and k

Following Newton and Behnia (2001), the turbulent kinetic
energy ki at a fully turbulent interface is given in terms of interfa-
cial shear stress si ¼ ðsxyÞi,

ki ¼
si

qg
ffiffiffiffiffi
cl
p ; ð8Þ

where cl ¼ 0:09. Berthelsen and Ytrehus (2005) and Durbin et al.
(2001) incorporate a roughness parameter Rs to account for the
transition from a smooth to a rough surface,

ki ¼
si

qg
ffiffiffiffiffi
cl
p ak; ð9Þ

where

ak ¼min½1; ðRþs =90Þ2�: ð10Þ

The roughness scale Rþs is given in wall units. For a fully turbulent
interface defined by Rþs > 90;ak ¼ 1. A specification of Rþs is then
only necessary if the interface is not considered to be fully turbulent
(e.g., via the RMS height of a wavy interface). In wall units,
kþi ¼
qgki

sw
¼ R

akffiffiffiffiffi
cl
p
� �

; ð11Þ

where R ¼ si=sw.
For the Reynolds stress equations that govern the deviatoric

normal stresses, we find that Neumann interfacial boundary condi-
tions are best suited. Here, the derivatives of ri ¼ uiui � 2=3k are
set to zero,

oyri ¼ 0 ð12Þ

such that the normal stress derivatives will be ð2=3Þoyk. This
approach ensures a smooth transition from the bulk flow to the
interface. In contrast, setting fixed values at the interface (Dirichlet
conditions) by the ad hoc assumption of isotropy in which the
normal stresses are set to 2=3k, yield large and possibly unrealistic
gradients near the interface. However, the performance of the
Neumann condition remains to be tested by comparison to experi-
mental stress values. These are not available in the current data set.

Finally, we note that the interfacial boundary value of the spe-
cific dissipation is, in wall units,

xþi ¼
ak

bxj ffiffiffiffiffi
cl
p

Res
; ð13Þ

where j is von Kármáns constant, and bx is a free parameter. The
corresponding eddy viscosity is (Biberg, 2005)

mþT
� �

i ¼
kþi
xþi
¼ ResbxjR: ð14Þ

Tuning xi via bx corresponds to an adjustment of the boundary
eddy viscosity which in turn influences the velocity profile near
the interface.

3. Reeks’ particle kinetic model

We will adopt the kinetic theory of Reeks (1992) for a dilute
particle suspension in turbulent gas flow. The current version of
the theory is suitable for describing the transport properties of
particles or droplets in a lighter surrounding fluid, with both light
ðSt � 1Þ and heavy particles ðSt � 1Þ as defined by their Stokes
number ðStÞ in terms of the ratio between particle frictional relax-
ation time to turbulence integral timescale seen from the particles.
Skartlien (2007b) finds that the correspondence is very good in
both Stokes number regimes, confirming the general validity of
the theory.

It is assumed (1) that the particle Reynolds number is suffi-
ciently low such that only a linear drag-force in the particle equa-
tion of motion needs to be retained. In this case, one is able to
separate the turbulent driving force on the particles from the fric-
tion force. For non-linear drag, separation can be obtained by per-
forming a linearization procedure such that the drag coefficient
becomes a function of the relative mean velocity between the par-
ticles and the fluid (e.g., Reeks, 1992). One also has to neglect lift
forces due to local vorticity in the carrier fluid, but the lift contribu-
tion from the mean shear can be retained in the form of non-diag-
onal components of a drag tensor. Furthermore, (2) inter-particle
collisions or interactions are neglected. These two assumptions
are necessary to invoke the current form of the kinetic theory of
Reeks. The basics of the theory are outlined in the annex.

3.1. Momentum and stress equations

In this section we will ignore the influence from secondary
flows and set the mean fluid velocity and mean particle velocity
in the cross section to zero. Later, we will discuss the effects of a
secondary gas flow. For the fluctuating particle velocity compo-



1 Skartlien (2007) evaluates �kyy directly from particle tracking simulations, and
finds that the eddy viscosity of the fluid is only a coarse approximation to the particle
diffusivity, even for the low Stokes number regime. This reflects the well known fact
that a diffusivity defined in terms of a gradient diffusion flux is generally a non-local
quantity in inhomogeneous media (inhomogeneous turbulence) through the path-
history of the particles.
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nents we use the notation ½up; vp;wp�, and ½Up;Vp;Wp� for the
ensemble averaged velocities. The components of the momentum
equation as derived from kinetic theory become

oy qvpvp
� �

þ qge ¼ �oy
�kyyq
� �

� �cyq; ð15Þ
oy qvpup
� �

þ qbðUp � UÞ ¼ �oy
�kyxq
� �

� �cxq;
oy qvpwp
� �

¼ �oy
�kyzq
� �

� �czq;

while the normal components of the stress equation become

oy qvpvpvp
� �

þ 2bqvpvp ¼ 2q�lyy; ð16Þ
oy qupupvp
� �

þ 2bqupup ¼ 2q�lxx � 2qTxyoyUp;

oy qwpwpvp
� �

þ 2bqwpwp ¼ 2q�lzz:

The particle dispersion tensors �k; �l and �c all depend on the fluid
Reynolds stresses, and in particular on the normal stress hvvi in
the current channel flow setting (as we shall see below). The �k ten-
sor introduces particle diffusion, �l acts as a stress source, and �c in-
duces a momentum source. The axial stress equation has an
additional source due to the mean shear oyUp. For further informa-
tion on the kinetic theory, see the annex and Hyland et al. (1999),
Swailes et al. (1998) and Reeks (2001, 2005).

3.2. Particle dispersion coefficients

The dispersion coefficients can be written (e.g., Reeks, 1992),

�kyy ¼ hypf 0yi; ð17Þ
�lyy ¼ hvpf 0yi; ð18Þ

where the wall normal force is f 0y ¼ v=sp. To evaluate these coeffi-
cients, we invoke Green’s function of the EOM to express the posi-
tion yp and velocity vp in terms of f 0y. This results in the evaluation of
the auto-correlation function

Cyyðx; xpÞ ¼ hf 0yðx; tÞf 0yðxpðsÞ; sÞi; ð19Þ

where xpðsÞ is the particle position ½xp; yp; zp� at time s 6 t, and
x ¼ xpðtÞ is a chosen evaluation point in the medium, through
which the particle passes at time t. Thus, the ensemble average
(over all turbulence realizations) is referred to a fixed evaluation
point x and a stochastic point xpðsÞ.

We now apply the locally homogeneous approximation. This
means that we treat the turbulence ðf 0yÞ as if it were homogeneous,
but at the local values. Such an approximation gives reasonable
results for a wide range of Stokes numbers (Skartlien, 2007). In
homogeneous turbulence, the following essential simplification
can be made: The two-point force correlations can be expressed in
terms of a time dependent exponential decay of the local single-point
correlations (e.g., Reeks, 1992). This gives

Cyy ’ hf 0yðx; tÞf 0yðx; tÞi exp
�ðt � sÞ

s

� �
; ð20Þ

where the characteristic correlation time is s. The dispersion com-
ponents are now given by the explicit form

�kyy ¼ hvvi ðs=spÞ2

1þ s=sp
; ð21Þ

�lyy ¼
�kyy

s
; ð22Þ

where hvvi is the wall normal stress of the carrier fluid. For station-
ary flow, the Reynolds time average vv is equivalent to the ensem-
ble average,

vv ¼ hvvi for stationary flow; ð23Þ

such that the Reynolds averages from the turbulence model can be
used as to calculate the dispersion tensor components above.
We further adopt the ‘‘passive scalar approximation – PSA”
(Skartlien, 2007) for the dispersion vector component �cy,

�cy ¼ �oy
�kyy
� �

: ð24Þ

This approximation assures the correct behavior for the momentum
equation in incompressible flow in the limit of small particle Stokes
number.
3.3. Turbulence correlation time seen from particles

One can show that the wall normal particle diffusivity limits to

ð�yyÞh ¼ hvvis; ð25Þ

when transport of kinetic stress can be ignored, and when the
locally homogeneous form of the dispersion tensor �kyy is invoked.
This limit is then appropriate for the smaller particles where the
eddy diffusivity is the relevant diffusivity. If we assume a Schmidt
number of unity, the eddy diffusivity is equal to the eddy viscosity
(i.e., the momentum diffusivity). Consistency between the eddy dif-
fusivity and the particle diffusivity for vanishing relaxation time
(passive tracer particles adjust to the flow instantaneously), then
implies the following correlation time

s ¼ mT=hvvi: ð26Þ

3.4. Concentration profile and particle diffusivity

With given dispersion tensor component �kyy, drift coefficient �cy,
and normal stress vpvp, the formal solution of (15) in terms of par-
ticle density (or concentration) is

qðyÞ ¼ qð0Þ �yyð0Þ
�yyðyÞ

exp �sp

Z y

0

ge þ �cyðfÞ
�yyðfÞ

df

� �
; ð27Þ

where �yy is the wall normal component of the particle diffusivity
tensor.

The particle diffusivity follows directly from the basic assump-
tions of (1) a simplified EOM with (2) a Gaussian turbulence force.
The diffusivity has two contributions: a wall normal stress contri-
bution spvpvp and a contribution due to the direct forcing by the
carrier fluid turbulence, sp

�kyy,

�yyðyÞ ¼ sp vpvp þ �kyy
� �

: ð28Þ

Both contributions are mainly controlled by the fluid normal
stress hvvi in the current channel flow setting (with vpvp driven
by �lyy). The normal stress contribution spðvpvpÞ dominates for
the larger Stokes numbers, while for smaller Stokes numbers,
the term sp

�kyy dominates. In the limit of vanishing relaxation
time, sp

�kyy converges to the passive scalar diffusivity. It is then
clear that a particle diffusivity approximation based on a passive
scalar diffusivity only will fail for larger Stokes numbers. In most
previous modelling efforts, however, the particle diffusivity is
usually set equal to the eddy viscosity of the fluid (which is equal
to the passive scalar diffusivity for a Schmidt number of unity).
One would assume that this is a potentially valid approximation
for low Stokes numbers (small droplets).1

For the special case of homogeneous turbulence, �yy reduces to a
constant and �cy ¼ 0, such that an exponential profile is recovered,

qðyÞ ¼ qð0Þ exp � spge

�yy
y

� �
:
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Although widely used as a first approximation, we note that the expo-
nential profile is not strictly applicable in wall bounded flow, where
turbulence is always inhomogeneous. We will see in the following
that accounting for inhomogeneous turbulence can give significant
improvements compared to a homogeneous approximation. This
approach involves the simultaneous solution of the momentum
equation (15) and stress equation (16), which is relatively
straightforward.

3.5. Boundary conditions, numerical solution and input parameters

The density (or concentration) boundary condition qð0Þ for the
concentration profile (27) may be determined from the empirical
entrainment and deposition relations as described in the annex.
The relaxation time is sp ¼ VT=g which we define in terms of the
terminal velocity VT and the acceleration of gravity, g. The terminal
velocity is calculated according to the annex (Rivkind and Ryskin,
1976). The turbulence normal stress hvvi and timescale s is pro-
vided from the Reynolds stress model.

In order to close the stress equation (16), we apply the
Chapman–Enskog relation (e.g., Sergeev et al., 2002; Zaichik and
Alichenkov, 2005),
vpvpvp ’ ��yyoyvpvp: ð29Þ
This closure relation for the triple correlation truncates the formally
infinite set of equations to second order. Combining (15) and (16)
with the Chapman–Enskog relation, gives a single equation for
vpvp, in the form of the non-linear second order equation

b2vpvp þ
ge þ �cy

2

� �
oyvpvp �

�yy

2sp

� �
o2

yvpvp ¼ b�lyy: ð30Þ

The two required boundary conditions may be chosen as the end-
point values of the normal stress (Dirichlet conditions). We have
not considered Neumann conditions yet. A solution can be obtained
by linearization and Newton–Raphson iteration. The linearized dif-
ferential equation corresponds to a tri-diagonal matrix equation
which is easy to implement numerically.

The stress boundary conditions are defined by adopting the lo-
cal form of the stress equation, which will result if the transport of
kinetic stress is set to zero,
2bqvpvp ¼ 2qlyy: ð31Þ
This translates to

vpvp ¼ splyy ¼ hvvi s=sp

1þ s=sp
: ð32Þ

This relation provides a reasonable limiting behavior; for large Stokes
number (heavy particles) the boundary kinetic stress will be much
smaller than the fluid stress, and for vanishing Stokes number, the
particle stress will be equal to the fluid stress. The last assumption
is accurate while the former assumption may be questionable. We
find that for the larger droplets, a moderate amplification of the esti-
mated stress provides a better match to the experimental concentra-
tion profile near the interface. We will therefore use the form

vpvp ¼ hvvi s=sp

1þ s=sp
f ðs=spÞ; ð33Þ

where the ‘‘amplification factor”

f ðs=spÞ ¼ 1þ a
1þ s=sp

ð34Þ

is designed such that f ! 1 for small droplets and f ! 1þ a for hea-
vier droplets. To obtain a reasonable match to the data for all cases,
we found that a ¼ 1=2 gave good results. This gives a factor 3/2 lar-
ger value of the normal stress for heavy droplets ðs=sp ! 0Þ. For the
upper boundary, we set f ¼ 1 since only the smaller droplets will be
present here.
4. Calculation of the total concentration profile

4.1. Integration over the size distribution

The turbulence model equations are solved first, and the output
is then given as input to the kinetic model for the droplets. The
particle equations are solved for each droplet size, and the full con-
centration profile is obtained by integration over the size bins. This
approach is valid when coalescence, breakup and turbulence mod-
ification in the bulk flow can be ignored.

The total density profile is obtained by summing over all the
density bins,

qðyÞ ¼
X

i

qið0ÞciðyÞ; ð35Þ

where ciðyÞ is the concentration profile normalized to the value at
y ¼ 0. These concentration profiles (for droplets with diameter di)
are obtained from the kinetic theory with the turbulence model
input. The corresponding boundary densities qið0Þ are determined
from the Rosin–Rammler distribution, and the total boundary den-
sity. See annex for the determination of droplet diameters, relaxa-
tion time and boundary density, respectively.

4.2. First order modelling

We will compare the concentration profiles to those generated
by first order modelling. For first order modelling, each size bin is
associated with their own scale height Hi giving a profile
qiðyÞ ¼ qið0Þ expð�y=HiÞ. The total density profile is now

qðyÞ ¼
X

i

qið0Þ expð�y=HiÞ: ð36Þ

The scale height for bin i is

Hi ¼
�
ðVTÞi

ð37Þ

and ðVTÞi is the terminal velocity of the droplet with diameter di

(Ueda, 1979; Yoon, 2005, see annex). Here, � is a characteristic dif-
fusivity that is assumed to be independent of droplet size,

� ¼ fðh=2Þu�eff ; ð38Þ

where f ¼ 0:075 is the non-dimensional scalar diffusivity in the
core regions of single phase pipe flow. This estimate may be reason-
able for the smaller droplets that follow the fluid closely, but not for
the larger droplets due to inertial effects that give appreciable
velocity differences between the fluid and the droplets.

To match the characteristic diffusivity in the current in two-
phase flow, we define an effective friction velocity u�eff . The first
choice is the average between wall and interface values,

u�eff ¼ ðu�i þ u�Þ=2: ð39Þ

A more representative approach for wall-interface configurations is
to simply adopt the average value of the eddy viscosity from the
Wilcox model,

�̂ ¼ 1
h

Z h

0
mTðyÞdy � fðh=2Þû�eff : ð40Þ

We will test both of these estimates below.

5. Comparison to pipe flow experiments

5.1. Flow parameters

The experiments were carried out using an iso-kinetic probe, as
described in detail by Tayebi et al. (2000). We use four test cases



Table 1
Flow parameters. The superficial and maximum gas velocities are given together with the pressure gradient (pressure drop), gas density and mean interface height relative to the
pipe floor. The RMS wave height at the interface is ry . The inner pipe diameter is 9.95 cm.

Case Usg ðm=sÞ Umax ðm=sÞ oxP ðPa=mÞ qg ðkg=m3Þ yi ðmmÞ ry ðmmÞ

A 4.33 5.68 88 23.4 27.0 4.0
B 4.51 5.64 117 32.5 26.0 4.5
C 6.89 8.17 192 23.4 21.5 4.5
D 7.00 8.01 240 32.5 18.5 3.0

Table 2
Wall friction velocities, Reynolds numbers and core values sm ¼ maxðsÞ of the
turbulence timescale.

Case u� ðm=sÞ Res Re sm ðmsÞ

A 0.30 33,400 628,000 38
B 0.31 49,500 905,000 42
C 0.49 59,300 995,000 27
D 0.49 86,000 1,408,000 29

Table 3
Tuned parameters. a is the amplification on the lower boundary kinetic stress relative
to the homogeneous value, �d=d32 is the calibration factor on the Azzopardi mean
droplet size formula (see annex). rd=

�d is the normalized width of the Rosin–Rammler
size distribution. R is the shear stress ratio based on the location of the maximum of
the mean velocity profile. bx is the interfacial eddy viscosity calibration factor,
adjusted to match the mean velocity near the interface.

Case a �d=d32 rd=
�d R bx

A 1.5 1.5 0.7 1.9 0.050
B 1.5 1.5 0.7 1.8 0.050
C 1.5 2.0 0.7 1.7 0.035
D 1.5 2.0 0.7 1.5 0.035
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taken from the Tayebi data. Cases A and B are the low velocity
cases, while cases C and D are the high velocity cases. The gas den-
sities were set to a high and a low value for each value of the super-
ficial gas velocities. Table 1 summarizes the flow parameters.

The gas volume height is h ¼ Di � yi where the inner pipe diame-
ter is Di ¼ 99:5mm, and yi is the liquid thickness (or interface height)
along the vertical diameter. The viscosity of the SF6 gas is
l ¼ 1:5� 10�5; Ns=m2 and for the Exxsol oil, ld¼1:6�10�3 Ns=m2.
The surface tension between the oil and gas is r ¼ 22� 10�3 N=m.
The oil density is 820 kg/m3. The gas Reynolds number Re ¼
hUmax=m and the friction Reynolds number Res are given in Table 2,
together with the wall friction velocities.

The tuned parameters are given in Table 3. These are the droplet
mean diameter, relative to the Azzopardi (1985)-formula (see annex),
the relative standard deviation of the Rosin–Rammler size distribu-
Fig. 1. Case A (Re = 628,000). Top: turbulent kinetic energy k (solid line), axial stress uu
profiles are normalized to ðu�Þ2. Bottom: the thin line shows the adopted timescale mT=v
tion, the fitted shear stress ratio R, and the fitted bx parameter that
controls the specific dissipation at the interface (which again controls
the eddy viscosity at the interface). Recall that R and bx is needed as
input or tuning parameters in the current gas turbulence model. In
principle, these parameters could be taken as output from a complete
wall-to-wall turbulence model including the gas–liquid interface.

5.2. Turbulence profiles and timescales

The gas turbulent kinetic energy, stress components and time-
scale s for case A (Re = 628,000) is given in Fig. 1. The turbulent
(dotted), spanwise stress ww (dashed) and wall normal stress vv (dash-dot). The
v which is consistent with scalar diffusivity, and the thick line s ¼ 2=x.
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kinetic energy reaches a minimum in the core flow near 0.65 flow
volume heights. The normal stress vv (dash dotted line) is about
one half the kinetic energy k (full line). The profile shapes are not
very sensitive to the Reynolds number, although they are some-
what flatter for the larger Reynolds number, with smaller interface
values relative to ðu�Þ2. Only in the very narrow wall region will the
profile shapes differ significantly with Reynolds number, but this is
not visible in the full-range plot. The turbulence timescale s
reaches a maximum where the turbulence energy is a minimum,
and the timescale diminishes towards the wall and the interface
where the characteristic eddy sizes and turnover times are smaller.

5.3. Concentration and mean velocity profiles

Figs. 2–5 show the results for all cases, without invoking sec-
ondary flow. The upper left panel shows the density data (crosses)
together with the density from the kinetic model (thin full line).
The dash-dotted lines are the first order model profiles resulting
from using a single characteristic eddy diffusivity. The thin dash-
dotted line is the result from using the diffusivity (38), and the
thick dash-dotted line is the result from using the cross sectional
average of the eddy viscosity (40).

The lower right panels show the eddy viscosity as the thin full
line (normalized to ½h=2�u�). The thin horizontal line shows the
classical pipe core value f ¼ 0:075, and the thin dotted line shows
the diffusivity (38) with the average friction velocity. The thick
dotted line shows the cross sectional average (40). We note that
this value is about twice the value of (38). Thus, for a first order
model to give reasonable concentration profiles, we require a cross
Fig. 2. Case A. The upper left panel shows the density data (crosses) together with the r
using the characteristic diffusivity (38), and the thick dash-dotted line is the result from
the density profile for all the size bins, as they are calculated from the kinetic theory. Devi
have almost flat profiles, while the large droplets have steep profiles. The upper right p
interfacial eddy viscosity. The lower right panel shows the eddy diffusivity (or eddy vi
f ¼ 0:075, and the thin dotted line shows the diffusivity (38). The thick dotted line show
sectionally averaged diffusivity, rather than the estimate (38), or
the classical pipe core value.

The first order model (with cross sectionally averaged eddy dif-
fusivity) matches the data well for cases A and B, except in upper
parts of the flow volume, where the data shows an increasing con-
centration with height towards the pipe roof. This behavior is not
possible to encapsulate with first order modelling. Kinetic model-
ling does a slightly better job, with somewhat elevated concentra-
tion in the upper parts, but the increasing density is not captured.
We will address this by invoking secondary flow later.

The situation is different for cases C and D for higher gas veloc-
ity. The largest deviation between the first order model and the
data are now found near the interface. Here, the density profile
in the data is steeper than the first order profile. This indicates that
the average eddy diffusivity overpredicts the actual diffusivity
close to the interface. The kinetic model (thin full line) seems to
predict profiles with a qualitative match to the data.

Near the interface, only heavy inertial droplets with the larger
Stokes numbers contribute significantly to the concentration. The
diffusivity for these droplets is controlled by the kinetic stress.
Nonlocal coupling via the transport term, and the kinetic stress
boundary condition, introduces nonlocal effects in the stress pro-
file for relatively large stopping distance

ffiffiffiffiffiffiffiffiffiffiffivpvp
p sp. For large Stokes

numbers, these effects can be appreciable and we may expect sig-
nificant deviations from the local eddy diffusivity (or the character-
istic eddy diffusivity). There are, however, clear differences
between the density profiles from the kinetic model and the data
for all cases. In this respect, we will discuss the role of secondary
flow below.
esults from the kinetic model (thin full line). The thin dotted line is the result from
using the cross sectional average scalar diffusivity (40). The lower left panel shows
ations from straight lines are due to turbulence inhomogeneity. The smaller droplets
anel shows the axial velocity profile together with the data, after tuning R and the
scosity) normalized to ðh=2Þu� . The thin horizontal line shows the pipe core value

s the average (40).



Fig. 3. Case B. The coding is the same as for case A.
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The lower left panels (Figs. 2–5) show the density profile for all
the size bins, as they are calculated from the kinetic theory. The
smaller droplets contribute with almost flat profiles. The large
Fig. 4. Case C. The coding is
droplets have steep profiles and contribute only near the interface.
Only the smaller droplets contribute near the pipe wall. The effect
of inhomogeneous turbulence is seen for most of the density
the same as for case A.



Fig. 5. Case D. The coding is the same as for case A.
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profiles (most of the sizes) noting that homogeneous turbulence
would have produced linear profiles on the log-plot. A characteris-
tic ‘‘bump” is seen in the profiles between 0.6 and 0.8 channel
heights, which is due a varying particle diffusivity and the turb-
ophoretic effect that accumulates the droplets where the turbulent
kinetic energy is a minimum.

The upper right panels show the axial velocity profile together
with the data, after tuning R and the interfacial eddy viscosity.

5.4. Diffusivity and turbophoresis

The momentum equation (15) can be rewritten as the diffusion
equation

��yyoyq� qspoy vpvp
� �

� spqge ¼ 0; ð41Þ

where ��yyoyq is the turbulent diffusive mass flux density,
�qspoyðvpvpÞ is the turbophoretic flux, and �qspge the gravitational
flux. Figs. 6–8 show the corresponding drift velocities obtained by
dividing each term by the density (lower left panels). Each figure
shows the contributions for a single droplet size for case A. The dif-
fusive and turbophoretic contributions are comparable for the
smaller size range, while the diffusive contribution is relatively lar-
ger for d=�d > 0:1. Turbophoresis and varying diffusivity influence
the concentration profile and its deviation from the leading order
exponential, resulting in a characteristic elevated density (‘‘bump”)
near y=h ’ 0:7 (lower right panels).

The diffusivity is dominated by the inertial term spðvpvpÞ for
d=�d P 0:4 (upper right panels), while for the smaller droplets,
the fluid induced part sp

�kyy dominates. The limiting value of sp
�kyy

is the eddy diffusivity for vanishing size or relaxation time.
The normal stress vpvp (thick full line in the upper left panel) is

very close to the local value sp �lyy (thin full line) obtained by ignor-
ing the Chapman–Enskog transport term in the stress equation.
The lower boundary value of the kinetic stress is set close to the lo-
cal value, such that also for the more inertial particles, the local and
non-local stress values are comparable.

The total particle diffusivity (thick full line, upper right panels)
tends to be significantly less than the eddy diffusivity (thin full
line) in the lower half of the flow volume for the larger droplets
(d=�d > 1:0 in Fig. 8). The reason for this is the smoothing effect
of the Chapman–Enskog transport term in the kinetic stress equa-
tion. The concentration profile is therefore steeper closer to the
interface where the larger particles dominate.

5.5. Effects of secondary flow

The basic source of secondary flow in a general sense is anisot-
ropy of the normal stresses in a plane perpendicular to the mean
flow (Speziale, 1982). Previous experimental work (e.g., Williams
et al., 1996) and simulation work (e.g., van’t Westende et al.,
2007), clearly suggest that secondary flow can be significant in a
pipe cross section. Reynolds stress anisotropy in pipe flow can be
induced by several different mechanisms such as varying rough-
ness of the liquid film along the wall perimeter, non-circular cross
section of the gas volume (Speziale, 1982), droplet concentration
gradients and finally waves on the gas–liquid interface (Nordsveen
and Berthelsen, 1997). The two more robust mechanisms in pipe
flow is probably the wall roughness effect and the non-circular
cross section effect, since these are present regardless of the exis-
tence of well defined interfacial waves and details in the concen-
tration profile.

To leading order, the secondary flow pattern is symmetric with
respect to the vertical centerline in a pipe. The most simple flow
configuration is two counter-rotating, axially aligned vortices
(van’t Westende et al., 2007) resulting in the circulation shown
in Fig. 9, with downflow along the vertical centerline. The LES-sim-
ulation of van’t Westende et al. (2007) includes the wall roughness



Fig. 6. Diffusivity and turbophoresis for the droplet size d=�d ¼ 0:12. The upper left panel shows the Stokes number sp=sðyÞ (thin, U-shaped line), particle normal stress (thick
full line), local estimate of the particle normal stress (thin, full line) and the fluid normal stress (dashed line). The upper right panel shows the total diffusivity sp vv þ �kyy

� �
(thick line), the fluid contribution sp

�kyy (dashed line) and the eddy viscosity (thin full line). The lower left panel shows the diffusion equation terms normalized by density.
The dashed line shows the diffusion velocity ��yyoy lnðqÞ, the thin full line shows the turbophoretic velocity �spoyðvpvpÞ, and the thin straight line shows the gravitational
velocity (settling velocity) spge . The lower right panel shows the relative concentration.

Fig. 7. Diffusivity and turbophoresis for the droplet size d=�d ¼ 0:4. The coding is the same as for Fig. 6.

612 R. Skartlien / International Journal of Multiphase Flow 35 (2009) 603–616



Fig. 8. Diffusivity and turbophoresis for the droplet size d=�d ¼ 1:2. The coding is the same as for Fig. 6. Note the deviation between the total diffusivity spðvv þ �kyyÞ (thick line,
upper right panel) and the eddy viscosity (thin full line), due to increasing effect of particle inertia.

R. Skartlien / International Journal of Multiphase Flow 35 (2009) 603–616 613
effect, and demonstrates an upflow along the pipe walls opposite
the roughness gradient of the wall film, and a downflow along
the vertical diameter. The magnitude of the secondary flow was
about 1–2% of the maximum axial flow velocity.
Fig. 9. Qualitative secondary flow streamlines based on the variation of the liquid
film roughness and non-circular gas flow cross section. We assume two counter-
rotating axial vortices as indicated. The pattern is symmetric with respect to the
vertical centerline, and the flow is purely vertical and downwards along this line. ‘+’
indicates a region with converging mass flux giving an excess density for a passive
tracer. ‘�’ indicates a region of mass flux divergence. The grey shaded area in the
bottom of the pipe illustrates the liquid layer.
The response of the droplets to the secondary flow depends on
the Stokes number. Inertial particles will be quite insensitive to the
secondary flow, while smaller droplets behave more as passive
tracers, and follow more closely the secondary flow pattern. We
will assume that the secondary flow velocity component for the
smaller droplets will be equal to the secondary flow component
of the fluid, and scale down in magnitude with increasing Stokes
number. Therefore, a convergent and compressible secondary gas
flow near the top of the pipe will increase the density of the smal-
ler droplets locally.

For simplicity, we assume a ‘‘quasi-2D” description along the
vertical diameter by including effects of convergent/divergent hor-
izontal flow in the particle equations, and by keeping the channel
flow Reynolds stress equations unchanged. We will specify a verti-
cal flow profile corresponding to the pattern in Fig. 9. We note that
a substantially more complicated 2D cross sectional description for
the kinetic theory, accompanying a Reynolds stress driven mean
flow, is needed to model the secondary flow effect in a fully consis-
tent manner.

The vertical component of the particle momentum equation in a
Cartesian 2D description is, with w-velocity components in the
spanwise (horizontal) direction z,

oy qvpvp þ qV2
p

	 

þ oz qwpvp þ qWpVp

� �
þ qge þ qbðVp � VÞ

¼ �oy
�kyyq
� �

� oz
�kzyq
� �

� �cyq: ð42Þ

We may solve this equation along the vertical centerline by specify-
ing the terms that couple to the horizontal direction. Before we
proceed, we will assume that oz-gradients in the turbulent shear
stress qwpvp and q�kzy can be ignored at the centerline. Using the
continuity equation r 	 ðqVpÞ ¼ 0 for the particles, and ozVp ¼ 0 at
the centerline (Vp is the most negative here),

oy qV2
p

	 

þ ozðqWpVpÞ ¼ qoy V2

p=2
	 


: ð43Þ
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These considerations enable (42) to be solved for q, with a given
mean vertical velocity Vp,

qoyðV2
p=2Þþoy qvpvp

� �
þqgeþqbðVp�VÞ¼�oy

�kyyq
� �

��cyq: ð44Þ

The formal solution of (44) then assumes the previous exponential
form,

qðyÞ¼qð0Þ�yyð0Þ
�yyðyÞ

exp �sp

Z y

0

geþ�cyþ bðVp�VÞþoy V2
p=2

	 
h i
�yy

df

8<
:

9=
;: ð45Þ

The effect of secondary flow in the kinetic stress will be ignored,
keeping the stress equation on the form (16).

When ðVp � VÞ > 0 (gas downflow relative to the mean particle
velocity at the centerline), the background fluid provides a down-
ward frictional force, adding onto the effect of gravity. This reduces
the local scale height and steepens the density gradient. The
‘‘dynamic pressure” term oy V2

p=2
	 


represents the effect of the
converging/diverging secondary flow along the centerline. For the
upper half of the pipe, this term is positive and the flow conver-
gence elevates the density (the effect is opposite in the lower half
of the pipe where the flow diverges).

The secondary flow along the centerline due to a single vortex
pair is fitted by the smooth function

V ¼ �nðyÞ; ð46Þ

with n > 0. For small droplets we will require ðVp � VÞ ! 0
although we do not formally account for true passive tracers within
the regime of the adopted equation of motion (requiring that the
particle/fluid density ratio is large). A suitable model for the mean
particle velocity may then be defined by

Vp ¼
V

1þ vgsp=u�
ð47Þ
Fig. 10. Case A with secondary flow. The upper left panel shows the density data (crosses
line). The lower left panel shows the density profile for all the size bins. The upper right p
unaffected by the secondary flow. The lower right panel shows the assumed secondary
giving the following drag force per unit mass due to secondary flow,

bðVp � VÞ ¼ vg
1þ vgsp=u�

nðyÞ
u�

: ð48Þ

Here, v is a tunable factor. We find that v ¼ 0:1 gives a reasonable
fit to the concentration profile, and this choice makes the drag force
contribution smaller than oyðV2

p=2Þ in (45).
Figs. 10 and 11 for cases A and C show the best fit density pro-

files when a secondary flow profile on the form

VðyÞ ¼ Mðy=h� 1Þexpðy=h�1Þ=Hs þ N ð49Þ

is applied (cases B and D show similar results). For all cases, the im-
posed secondary flow gives a significant effect in the concentration
profiles in the upper half of the flow volume, giving qualitatively
correct results. We use the same secondary flow velocity profile
for a given axial superficial velocity, and assume that the secondary
flow velocity does not depend on the gas density.

The adopted velocity profile is qualitatively similar to that of
van’t Westende et al. (2007), with the extremal value located near
y=h ’ 0:7. The lower right panels show the assumed secondary
flow velocity normalized to the wall friction velocity. The
maximum velocities correspond to about 0.35 m/s for cases A
(and B), and 0.25 m/s for cases C and D. This is comparable to the
LES-values of van’t Westende.

We may also construct a first order density profile corrected for
secondary flow, by adopting constant value � for the diffusivity,
and �cy ¼ 0 as discussed earlier. Eq. (45) then reduces to

qðyÞ¼qð0Þexp
�spge

�
y

n o
exp �sp

�

Z y

0
bðVp�VÞþoy V2

p=2
	 
h i

df

� �
; ð50Þ

where the last exponential term represents a correction to the first
order profile. This approach can be justified since the smaller drop-
) together with the results from the kinetic model including secondary flow (thin full
anel shows the axial velocity profile together with the data, which is assumed to be
flow velocity V along the vertical centerline.



Fig. 11. Case C with secondary flow. The coding is the same as for Case A with secondary flow.
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lets dominate at large height where the secondary velocity has the
largest impact. Thus, one can choose a local value of the eddy diffu-
sivity (for large heights) and use (50) for the smaller droplets, as an
improved first order solution.

6. Summary and conclusions

6.1. Model properties

A model for the droplet concentration profile in turbulent gas–
liquid flow in horizontal channels has been developed. The novelty
of the current approach is the combination of the kinetic theory of
Reeks (1992) to describe the droplets in each size bin, with the
Reynolds stress model of Wilcox (2006) for the gas turbulence. We
assume a Rosin–Rammler size distribution, and neglect coalescence
and breakup in the gas flow, and wall deposition effects on the
concentration. We have neglected the back reaction on the gas tur-
bulence (two-way coupling is ignored). An entrainment correlation
due to Schadel and Hanratty (1989) is used to describe the boundary
concentration near the large scale gas–liquid interface.

The model is compared to measured concentration profiles and
velocity profiles along the vertical diameter in the pipe cross
section for four different combinations of gas velocity (in the range
6–7 m/s) and gas density (in the range 20–30 kg/m3). The data are
taken from Tayebi et al. (2000), using SF6 gas and Exxsol oil in a
10 cm diameter horizontal pipe. These experiments utilised an
iso-kinetic probe.

The strength of the kinetic theory lies in the fact that it predicts
a generalized particle diffusivity valid for all Stokes numbers (or
droplet sizes), such that both the ‘‘passive tracer regime” of the
smaller droplets, and the ‘‘free flight regime” of the larger droplets,
can be included in the same consistent description. The latter pop-
ulation of droplets is subject to a diffusivity which is (1) non-local
and (2) sensitive to the fluctuation kinetic energy at the large scale
interface. Furthermore, the theory accounts for turbophoresis,
which is migration of particles (droplets) away from regions of
large particle kinetic energy.

6.2. Modelling results

We find that varying diffusivity and turbophoresis accumulate
droplets near the core region of the flow, where the turbulent
kinetic energy of the gas is at a minimum. The concentration
profile in the upper half of the flow volume is due to the smaller
droplets, which are subject to a diffusivity that is close to the eddy
diffusivity. In the low velocity cases (A and B) the measured droplet
concentration is increasing towards the upper pipe wall (concen-
tration inversion). We demonstrate that when a compressible dou-
ble-vortex secondary flow is included in the model, we obtain
excellent agreement to the data in all cases. van’t Westende et al.
(2007) shows via LES simulations that the smaller droplets advect
into a stagnation point between the vortices, leading to increased
droplet density near the upper pipe wall. Accumulation of droplets
near the upper wall is of importance in the context of wall deposi-
tion of corrosion inhibitor that may be carried by the droplets.

The concentration near the large scale gas/fluid interface is
dominated by the larger droplets. The corresponding diffusivity
may deviate significantly from the eddy diffusivity, and we find a
lower local diffusivity near the interface. This leads to a steeper
concentration than what would result if we applied the eddy diffu-
sivity. A reliable prediction of the concentration profile near the
interface is important for estimating the mass flux or transport rate
of droplets in the gas flow, since the largest flux contribution will
be found near the interface where the concentration is large, and
the gas velocity is large.

A simplified ‘‘first order model” that adopts a single character-
istic particle diffusivity, gives reasonable order of magnitude esti-
mates of the droplet concentration, provided that the cross
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sectionally averaged eddy diffusivity from the full turbulence mod-
el is adopted. This diffusivity is larger than the classical pipe core
value which is often used in droplet transport modelling (e.g., Paras
and Karabelas, 1991 for air–water flow). The above-mentioned
effects in the concentration profile (modified diffusivity for large
droplets and secondary flow effects for small droplets) will not
be captured by first order modelling. This may lead to an overesti-
mated average droplet transport rate (due to the larger droplets),
or an underestimated droplet concentration near the top of the
pipe (due to the smaller droplets).

The applicability of the complete model is straightforward,
since only tridiagonal matrix equations need to be solved. These
equations are nonlinear and iterations are needed to solve them.
A number of auxiliary variables are available from the turbulence
model, such as the axial velocity profile. Hence, the axial droplet
flux may be calculated. We note that a full wall-to-wall cross sec-
tional model is not treated in this work. Such an effort requires a
self-consistent treatment of the turbulence across the large scale
gas/liquid interface.

6.3. Considerations on the scaling of the concentration profile with
respect to pipe diameter

We compared the model to experimental data from a 10cm
diameter pipe. Oil/gas field conditions correspond to much larger
diameters (a factor of 10 larger), and it is thus of interest to exam-
ine the scaling property of the concentration profiles, with respect
to pipe diameter.

In the context of first order modelling, the scaling of the concen-
tration profile with respect to the flow volume height h (or pipe
radius with given holdup) depends on (a) the characteristic scale
height Hi, which is the ratio between the characteristic particle
diffusivity and the settling velocity of a droplet of diameter
di;Hi ¼ �ðdiÞ=½gspðdiÞ�, and (b) the concentration boundary condi-
tion. The scaling properties of the diffusivity for large and small
droplets are different (as demonstrated using the kinetic theory).
For the larger droplets, the particle kinetic stress dominates and
non-local transport of kinetic stress may be important (in the
limiting case, the droplet trajectories are close to ballistic and the
carrier phase plays only a minor role).

For the smaller droplets, local turbulent diffusion is the important
effect, and the characteristic diffusivity scale as � 
 hu�eff , where u�eff

is a characteristic friction velocity (characteristic turbulent velocity)
and h is the flow volume height (see the diffusivities defined by Eqs.
(38) and (40)). The dimensionless scale height for a given particle
size di, will then scale as Hi=h 
 u�eff=gspðdiÞ. That is, for small
droplets, the scale height is proportional to the flow volume height
h provided that the left-hand side of the equation (or u�eff ) is kept
constant.

The droplet size distribution is likely to vary with h, since the
mean droplet size and size variance depends on the gas turbulence
level at the interface and in the gas volume. Entrainment (atomiza-
tion) and deposition rates also depend on the turbulence level at
the interface. Future analysis is necessary to clarify how the
boundary condition and the droplet size distribution depend on
h. This is to some extent dependent on more fundamental research
on the turbulent gas/liquid interface, and droplet breakup in turbu-
lent gas. Advanced numerical CFD and experimental work,
together with physical modelling, are strongly encouraged to gain
more insight in the scaling properties.
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